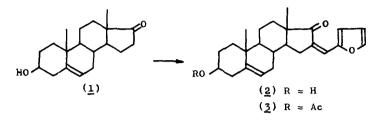
Tetrahedron Letters No.32, pp. 3891-3895, 1966. Pergamon Press Ltd. Printed in Great Britain.

> STUDIES ON CATALYTIC HYDROGENATION OF 16-FURFURYLIDENE-17β-HYDROXY STEROIDS.

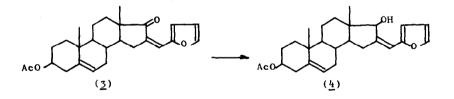
Milutin Stefanović, Dušan Miljković, Momčilo Miljković*, Aleksandar Jokić and Božidar Stipanović

Department of Chemistry, Faculty of Sciences, and Institute for Chemistry, Technology and Metallurgy, Belgrade, Yugoslavia.

(Received 10 June 1966)


Condensation of androstenolone (<u>1</u>) with furfural in the presence of sodium hydroxide under nitrogen, afforded in quantitative yield 16-furfurylidene-androstenolone (<u>2</u>) - m.p. $190^{\circ}; [\measuredangle]_{D}^{20} = -107^{\circ}$ (c=0,57 in CHCl₃); UV-Spectrum: $\lambda_{max} = 327$ nm ($\xi = 26,000$); IR-Spectrum: $\lambda_{max} = 3509$, 1724, 1640, 1563, 1026, 1010, 892, 752 cm⁻¹.

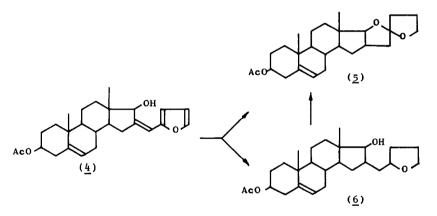
Acetylation of (<u>2</u>) with $\Lambda c_2 0/Py$ gave the corresponding 3β -acetate (<u>3</u>) - m.p. $196^{\circ}; [\alpha]_D^{20} = -165^{\circ}$ (c=0,58 in CHCl₃); UV-Spectrum: $\lambda_{max} = 325$ nm ($\xi = 27,600$); IR-Spectrum: $\gamma_{max} = 1724$, 1626, 1550, 1250, 1026, 1010, 885, 746 cm⁻¹; NNR-Spectrum**: $\delta = 7,60/d$ (J=1,8)/(1); ca.7,2/m/(1); 6,64/d (J=6,3)/(1);


^{*} Present adress: Department of Chemistry, Swiss Federal Institute of Technology, Zürich, Switzerland.

^{**} Chemical shifts are given in ppm and coupling constants in cps; symbols d, t, q and m indicate doublett, triplett, quartett and multiplett, respectively; the numbers in parentheses represent the number of protons of the corresponding peak.

6,52/q (J=3,6 and 1,8)/(1); 5,44/d (J=4,0)/(1); ca.4,6/m (broad)/ (1); 2,02/s/(3); 1,09/s/(3); 0,96/s/(3).

Reduction of (3) with sodium borohydride in methanol at 0°, gave a 90% yield of 3 β -acetoxy-16-furfurylidene-17 β hydroxy- Δ^5 -androstene (4) - m.p. 214°; [α]_D²⁰ = -160° (c=0,64 in CHC1₃); UV-Spectrum: λ_{max} = 271 nm (£ = 24,700); IR-Spectrum: V_{max} = 3425, 1724, 1626 (shoulder), 1550, 1258, 1026, 1010, 879, 742 cm⁻¹; NHR-Spectrum: δ = 7,39/d (J=1,75)/(1); ca.6,4/m/(2); ca.6,2/d (J=3,0)/(1); 5,40/d (J=4,0)/(1); ca.4,6/m (broad)/(1); ca.4,0/s (broad)/(1); 2,02/s/(3); 1,06/s/(3); 0,70/s/(3).

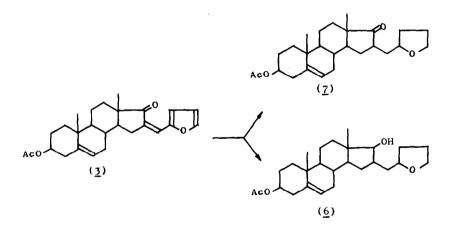

An ethylacetate solution of $(\underline{4})$ was hydrogenated under normal pressure using PtO_2 as catalyst. After 6 hours the

absorption of hydrogen ceased and the resulting mixture was chromatographed on a silica-gel column. The following products were isolated and identified:

(a) Spiro-ketal (5) - m.p. $170^{\circ}; [\alpha]_{D}^{20} = 0^{\circ}$ (c=1,00 in CHCl₃); UV-Spectrum: no absorption; IR-Spectrum: $\sqrt[3]{max} = 1722$, 1233, 1096, 1080, 1064, 1046, 1017, 990, 975, 920, 903 cm⁻¹; NMR-Spectrum: $\delta = 5,36/d$ (J=4,6)/(1); ca.4,6/m (broad)/(1); 4,05/d (J=9,8)/(1); ca.3,9/m/(2); 2,02/s/(3); 1,04/s/(3); 0,74/s/(3).

(b) 3β -Acetoxy-16 β -tetrahydrofurfuryl-17 β -hydroxy- Δ^5 androstene (<u>6</u>) - m.p. 210° ; $[\alpha]_D^{20} = -61^\circ$ (c=1,00 in CHCl₃); UV-Spectrum: no absorption; IR-Spectrum: $\gamma_{max} = 3356$, 1720, 1235, 1070 cm⁻¹; NMR-Spectrum: $\delta = 5,40/d$ (J=4,0)/(1); ca.4,6/m (broad)/(1); ca.3,8/m/(4); 3,3/s (broad)/(1); 2,02/s/(3); 1,04/s/(3); 0,78/s/(3).

Oxidation of $(\underline{6})$ with lead tetraacetate in benzene gave the spiro-ketal $(\underline{5})$.



Hydrogenation of 3β -acetoxy-16-furfurylidene-androstenclone (3) under the same experimental conditions yielded the following products:

(a) 3β -Acetoxy-16 β -tetrahydrofurfuryl-17-oxo- Δ^5 -androstene (<u>7</u>) - m.p. $176^{\circ}; [\alpha]_{D}^{20} = +25^{\circ}$ (c=0,60 in CHCl₃); UV-Spectrum: no absorption; IR-Spectrum: $\sqrt[7]{max} = 1736$, 1250, 1080 cm⁻¹; NMR-Spectrum: $\delta = 5,40/d$ (J=4,0)/(1); ca.4,6/m (broad)/(1); ca. 3,8/m/(3); 2,02/s/(3); 1,06/s/(3); 0,80/s/(3).

(b) 3 β -Acetoxy-16 β -tetrahydrofurfury1-17 β -hydroxy- Δ^5 androstene (<u>6</u>).

In this case no spiro-ketal was obtained.

Hydrogenation of $(\underline{3})$ in ethylacetate under normal pressure with Raney-nickel as catalyst afforded the same products as above, the yield of $(\underline{7})$ being higher. The intramolecular cyclisation of β -furylacrolein derivatives was carried out under a pressure of 100-200 atm. at 160° and with Raney-nickel on Kieselgur as catalyst^{1,2)}. In our case, however, the intramolecular cyclisation of $(\frac{4}{9})$ into the spiro-ketal (5) occurs by hydrogenation at room temperature with PtO₂ as catalyst. This is probably due both to the rigid conformation of the D-ring and to the cis-configuration of the 17 β -hydroxy and 16 β -dihydrofurfuryl groups (probable intermediate in the reaction), which allows close enough approach of the reacting centers^{*}.

REFERENCES

1. H.E.Burdick & H.Adkins, <u>J.Am.chem.Soc</u>. <u>56</u>, 438 (1934)

2. M.Farlow, H.E.Burdick & H.Adkins, J.Am.chem.Soc. 56, 2498 (1934)

^{*} Cyclisation of furfurylidene derivatives of cyclohexanone also requires the conditions proposed by Adkins^{1,2)}.